Problem 1.3

Cosine and sine by vector algebra*
Find the cosine and the sine of the angle between $\mathbf{A}=(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$ and $\mathbf{B}=(-2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})$.

Solution

The dot product is defined as

$$
\mathbf{A} \cdot \mathbf{B}=|\mathbf{A} \| \mathbf{B}| \cos \theta,
$$

where $|\mathbf{A}|$ and $|\mathbf{B}|$ are the magnitudes of \mathbf{A} and \mathbf{B}, respectively, and θ is the angle between the vectors. This angle must be between 0° and 180°. Solve for $\cos \theta$.

$$
\cos \theta=\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}
$$

Now plug in the numbers.

$$
\cos \theta=\frac{(1)(-2)+(1)(1)+(1)(1)}{\sqrt{3^{2}+1^{2}+1^{2}} \sqrt{(-2)^{2}+1^{2}+1^{2}}}
$$

Therefore,

$$
\cos \theta=-\frac{4}{\sqrt{66}} \approx-0.492 .
$$

Sine and cosine are related by the formula,

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Solve this for $\sin \theta$.

$$
\sin \theta= \pm \sqrt{1-\cos ^{2} \theta}
$$

Since θ is between 0° and 180°, the sine of the angle is positive, so

$$
\sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\left(-\frac{4}{\sqrt{66}}\right)^{2}} .
$$

Therefore,

$$
\sin \theta=\frac{5}{\sqrt{33}} \approx 0.870
$$

